Lipschitz stratification of complex hypersurfaces in codimension 2

نویسندگان

چکیده

We show that the Zariski canonical stratification of complex hypersurfaces is locally bi-Lipschitz trivial along strata codimension two. More precisely, we study equisingular families surface, not necessarily isolated, singularities in ${\\mathbb{C}^3}$. a natural such family, given by singular set and generic family polar curves, provides Lipschitz sense Mostowski. In particular are trivial, with trivializations obtained integrating vector fields.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Codimension Two Subvarieties in Hypersurfaces

We show that for a smooth hypersurface X ⊂ P of degree at least 2, there exist arithmetically Cohen-Macaulay (ACM) codimension two subvarieties Y ⊂ X which are not an intersection X ∩ S for a codimension two subvariety S ⊂ P. We also show there exist Y ⊂ X as above for which the normal bundle sequence for the inclusion Y ⊂ X ⊂ P does not split. Dedicated to Spencer Bloch

متن کامل

New Aspects on Cr-structures of Codimension 2 on Hypersurfaces of Sasakian Manifolds

We introduce a torsion free linear connection on a hypersurface in a Sasakian manifold on which we have defined in natural way a CR-structure of CR-codimension 2. We study the curvature properties of this connection and we give some interesting examples.

متن کامل

Pseudo Ricci symmetric real hypersurfaces of a complex projective space

Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.

متن کامل

Singular Levi-flat Hypersurfaces and Codimension One Foliations

We study Levi-flat real analytic hypersurfaces with singularities. We prove that the Levi foliation on the regular part of the hypersurface can be holomorphically extended, in a suitable sense, to neighbourhoods of singular

متن کامل

Hirzebruch Classes of Complex Hypersurfaces

The Milnor-Hirzebruch class of a locally complete intersection X in an algebraic manifold M measures the difference between the (Poincaré dual of the) Hirzebruch class of the virtual tangent bundle of X and, respectively, the Brasselet-Schürmann-Yokura (homology) Hirzebruch class of X . In this note, we calculate the Milnor-Hirzebruch class of a globally defined algebraic hypersurface X in term...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the European Mathematical Society

سال: 2022

ISSN: ['1435-9855', '1435-9863']

DOI: https://doi.org/10.4171/jems/1224